Generator

Throughout this change there has prevailed a consistency of purpose: a steady aim has been leveled at definite goals; while useful arts in multitude attest the solidity of the work done. If, therefore, we find a tremendous outburst of activity at the very moment when, after twenty-five years of superlative productiveness, electricians were ready, with the reforming English statesman, to rest and be thankful, we may safely assume that electricity has reached another of those crucial points at which it becomes worth the while of the casual outside observer to glance at what is going on. To the timid and the conservative, even to many initiated, these new departures have indeed become exasperating. They demand the unlearning of established facts, and insist on right-about-faces that disregard philosophical dignity. The sensations of a dog attempting to drink sea-water after a lifetime spent on inland lakes are feeble compared with those of men who discover that electricity is quite other than the fluid which they have believed it to be from their youth up, and that actually there is no such thing as electricity or an electric current.


Electricity has, indeed, taken distinctively new ground of late years; and its present state of unrest—unsurpassed, perhaps, in other regions of research—is due to recent theory and practice, blended in a striking manner in the discoveries of Mr. Nikola Tesla,2 who, though not altogether alone, has come to be a foremost and typical figure of the era now begun. He invites attention to-day, whether for profound investigations into the nature of electricity, or for beautiful inventions in which is offered a concrete embodiment of the latest means for attaining the ends most sought after in the distribution of light, heat, and power, and in the distant communication of intelligence. Any one desirous of understanding the trend and scope of modem electrical advance will find many clues in the work of this inventor. The present article discloses a few of the more important results which he has attained, some of the methods and apparatus which he employs, and one or two of the theories to which he resorts for an explanation of what is accomplished.

By a brief preliminary survey, we may determine our historical longitude and latitude, and thus ascertain a little more precisely where we are. It is necessary to recapitulate facts known and accepted. Let it, then, be remarked that aside from the theories and interpretations that have beset the science, electricity as an art has for three hundred years been directed chiefly to securing an abundant, cheap, efficient, and economical supply of the protean agency, be it what it may. Frictional machine, Leyden jar, coil, battery, magnet, dynamo, oscillator,— these are but the steps in a process as regular and well-defined as those which take us from the aboriginal cradling of gold out of river sands up to the refining of ore with all the appliances of modem mechanism and chemistry. Each stage in electrical evolution has seen the conquest of some hitherto unknown art—electrotherapy, telegraphy, telephony, electric lighting, electric heating, power transmission; yet each has had limitations set on it by the conditions prevailing. With a mere battery much can be done; with a magnet, still more; with a dynamo, we touch possibilities of all kinds, for we compel the streams, the coalfields, and the winds to do us service: but with Mr. Tesla's new oscillator we may enlist even the ether-waves, and turn our wayward recruits into resistless trained forces, sweeping across continents of unimagined opportunity.

The dynamo, slowly perfected these fifty years, has rendered enormous benefits, and is destined to much further usefulness. But all that we learn now about it of any intrinsic value is to build it bigger, or to specialize it; and the moment a device reaches that condition of development, the human intellect casts about for something else in which the elements are to be subtler and less gross. Based upon currents furnished by modern dynamo-electric machines, the arc-light and the trolley-car seek to monopolize street illumination and transportation, while the incandescent lamp has preempted for exclusive occupancy the interiors of our halls and homes. Yet the abandonment of gas, horses, and sails is slow, because the dynamo and its auxiliaries have narrow boundaries, trespassing which, they cease to offer any advantage. We can all remember the high hopes with which, for example, incandescent lighting was introduced some fifteen years ago. Even the most cynical detractor of it will admit that its adoption has been quick and widespread; but as a simple matter of fact, to-day, all the lamps and all the lighting dynamos in the country would barely meet the needs of New York and Chicago if the two cities were to use no other illuminant than electricity. In all England there are only 1,750,000 incandescent lamps contesting for supremacy with probably 75,000,000 gas-burners, and the rate of increase is small, if indeed it exceeds that of gas. Evidently, some factor is wanting, and a new point of departure, even in mere commercial work, is to be sought, so that with longer circuits, better current-generating apparatus, and lamps that will not burn out, the popular demand for a pure and perfect light can be met. In power transmission, also, unsatisfied problems of equal magnitude crop up. "Is there any load that water cannot lift?" asked Emerson. "If there be, try steam; or if not that, try electricity. Is there any exhausting of these means?" None, provided that our mechanics be right.

Post a Comment